

Institut für Umweltanalytik · Oberndorfer Str.1· 91096 Möhrendorf

Markt Neunkirchen am Brand

Herrn Fauth Klosterhof 2-4

91077 Neunkirchen am Brand

Baucis Funke Oberndorfer Straße 1 91096 Möhrendorf 09131 41071 kontakt@funkelabor.de 14. November 2023 23.10412

WAA Ausgang

Korrosionstechnische Wasseruntersuchung

Anlass und Auftrag

Die korrosionstechnische Wasseruntersuchung dient zur Feststellung der Wasserzusammensetzung und des Verhaltens gegen Installationsmaterialien

Probenkennzeichnung

Probenart : Trinkwasser

Bezeichnung : Wasseraufbereitung Ausgang

Laboreingang : 17.10.2023 Objektkennzahl : 1230 0474 00035

Wasserversorgungsunternehmen : Markt Neunkirchen am Brand

Probenahme

Probenahmeort : Neunkirchen
Entnahmestelle : Reinwasser vor UV
Probenehmer : G. Först, IfU
Probenahmedatum : 17.10.2023
Probenahmezeit : 10:20
Probenahmetechnik : a

Analysenergebnisse

Parameter	Symbol	Einheit	Messwert	Analysenmethoden
Summenparameter			C 11	
Färbung			farblos	qualitativ
Trübung			klar	qualitativ
Geruch			geruchlos	DIN EN ISO 1622-B3-C.06/10
Geschmack		٥٩		DIN EN ISO 1622-B3:06/10
Wassertemperatur		°C	14,3	bei der Probenahme
Leitfähigkeit (bei 25°C)		μS/cm	756 7.62	DIN EN 27888-C8:93/11
pH-Wert		/1	7,63	DIN EN ISO 10523:12/04
Sauerstoff	O_2	mg/l	9,8	DIN EN ISO 5814-G22:13/02
Redoxspannung	I/D	mV	368	DIN 38404-C6:84/05
Basenkapazität	$KB_{8,2}$	mmol/l	0,20	DIN 38409-H7:05/12
Säurekapazität	$KS_{4,3}$	mmol/l	4,23	DIN 38409-H7:05/12
TOC	C	mg/l	< 0,9	DIN EN 1484-H3:97/08
spektr. Absorptionskoeff. 254nm		1/m	< 0,1	DIN 38404-C3:05/07
spektr. Absorptionskoeff. 436nm		1/m	< 0,1	DIN EN ISO 7887-C1:12/04
Härte	~-	mmol/l	2,20	ICP (Ca+Mg)
Chlor, frei	Cl	mg/l		
abfiltrierbare Stoffe		mg/l	< 1,0	DIN 38409-H2 (0,45μm)
Feststoffe			keine	
Anionen				
Kieselsäure	SiO_2	mg/l	10,7	DIN 38405-D21:90/10
Carboxylate (<c3)< td=""><td>$C_2H_3O_2$</td><td>mg/l</td><td></td><td></td></c3)<>	$C_2H_3O_2$	mg/l		
Chlorid	Cl-	mg/l	92,7	DIN EN ISO 10304-1-D20:09/07
Nitrit	NO_2^-	mg/l	< 0,01	DIN EN ISO 10304-1-D20:09/07
Nitrat	NO_3^-	mg/l	1,50	DIN EN ISO 10304-1-D20:09/07
Phosphor	P	mg/l	< 0,20	DIN EN ISO 17294:17/01
Sulfat	SO_4^{2-}	mg/l	38,3	DIN EN ISO 10304-1-D20:09/07
V.,4.				
Kationen Ammonium	$\mathrm{NH_4}^+$	ma/1	< 0,02	DIN 38406-E5:83/10
Calcium	Ca	mg/l	52,0	DIN 58400-E3:83/10 DIN EN ISO 17294:17/01
Magnesium	Mg	mg/l	22,0	DIN EN ISO 17294:17/01 DIN EN ISO 17294:17/01
Kalium	K K	mg/l	15,4	DIN EN ISO 17294:17/01 DIN EN ISO 17294:17/01
Natrium	Na	mg/l mg/l	66,0	DIN EN ISO 17294:17/01 DIN EN ISO 17294:17/01
Eisen	Fe	_	< 0,010	DIN EN ISO 17294:17/01 DIN EN ISO 17294:17/01
Mangan	Mn	mg/l	< 0,008	
Aluminium	Al	mg/l	< 0,0008	DIN EN ISO 17294:17/01 DIN EN ISO 17294:17/01
Arsen	As	mg/l	0,0020	DIN EN ISO 17294:17/01 DIN EN ISO 17294:17/01
Blei	As Pb	mg/l	< 0,0020	DIN EN ISO 17294:17/01 DIN EN ISO 17294:17/01
Chrom	Cr	mg/l mg/l	< 0,0005 < 0,0002	DIN EN ISO 17294:17/01 DIN EN ISO 17294:17/01
Kupfer	Cr Cu	mg/l mg/l	0,0050	DIN EN ISO 17294:17/01 DIN EN ISO 17294:17/01
Nickel	Cu Ni	mg/l	0,0030	DIN EN ISO 17294:17/01 DIN EN ISO 17294:17/01
Zink	Zn	mg/l	0,0002	DIN EN ISO 17294:17/01 DIN EN ISO 17294:17/01
Uran	U	mg/l	0,0080	DIN EN ISO 17294:17/01 DIN EN ISO 17294:17/01
		J	•	
Berechnete Parameter	CO	mm o 1 /1	0.22	
gelöstes Kohlendioxid	CO_2	mmol/l	0,23	
Hydrogencarbonat	HCO3-	mmol/l	4,16	
Carbonat	CO3	mmol/l	0,0088	DIN 29404 C10/2:12/12
pH-Wert nach Calcitsättigung			7,51	DIN 38404-C10/3:12/12
Calcitsättigungsindex	C ₂ CO2	m o /1	0,13	DIN 38404-C10/3:12/12
Calcitlösekapazität	CaCO3	mg/l	-5,5 kalkabscheidend	DIN 38404-C10/3:12/12
Kationenquotient	S0		0,74	(K+Na)/(2*Ca+2*Mg)
Anionenquotient	S1		0,81	(Cl+NO3+2*SO4)/KS4,3
Gerieselquotient	S2		141	(Cl+2*SO4)/NO3
Kupferquotient	S3		10,6	KS4,3/SO4

Beurteilung des Korrosionsverhaltens gegenüber Installationsmaterialien

Erläuterungen

In den folgenden Auswertetabellen sind die Einheiten der Messgrößen unterdrückt. Die Messgrößen haben die Einheiten wie sie in der Analysenergebnisstabelle angegebenen sind, also meist mg/l oder mmol/l. Bei den einzelnen Korrosionsarten sind Bedingungen für anzustrebenden Zuständen aufgeführt. Das sind diejenigen Bedingungen, bei denen keine Korrosion auftritt oder bei denen das Wasser eine wünschenswerte Beschaffenheit aufweist. Die einzelnen Klauseln einer Bedingung müssen alle gleichzeitig erfüllt sein (und-Verknüpfung).

Korrosive oder andere unerwünschte Zustände sind rot markiert.

Der Beurteilung liegen neben eigenen Erfahrungen unter anderem folgende Normen zugrunde. DIN 50930-6: Korrosion metallener Werkstoffe im Innern von Rohrleitungen, Behältern und Apparaten bei Korrosionsbelastung durch Wässer – Teil 6: Bewertungsverfahren und Anforderungen hinsichtlich der hygienischen Eignung in Kontakt mit Trinkwasser (Okt. 2013)

EN 12502: Korrosionsschutz metallischer Werkstoffe. Hinweise zur Abschätzung der Korrosionswahrscheinlichkeit in Wasserverteilungs- und -speichersystemen

Teil 1: Allgemeines (2004)

Teil 2: Einflussfaktoren für Kupfer und Kupferlegierungen (2004)

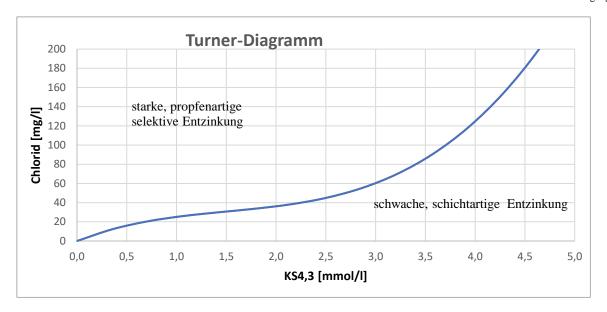
Teil 3: Einflussfaktoren für schmelztauchverzinkte Eisenwerkstoffe (2004)

Teil 4: Einflussfaktoren für nichtrostende Stähle (2004)

Teil 5: Einflussfaktoren für Gusseisen, unlegierte und niedriglegierte Stähle (2004)

Wasserbeschaffenheit

relevante Messwerte		Bedingungen für	Ergebnis
		wünschenswerten Zustand	Grund
		Zustana	Grund
Hauptmineralien			Natrium-Hydrogencabonat
Säurekapazität	4,23		HCO3 = 4,23 mval/l
Chlorid	92,7		Ca = 2.6 mval/l
Nitrat	1,50		Na = 2.9 mval/l
Sulfat	38,3		,
Calcium	52,0		
Magnesium	22,0		
Kalium	15,4		
Natrium	66,0		
		I	ı
Härtebereich	2.20	1.5 .1	mittel
Härte	2,20	< 1,5 weich	
		1,5 - 2,5 mittel	
		>2,5 hart	
Kalk-Kohlensäure-Glei	ichgewicht		im Kalk-Kohlensäure-Gleichgewicht
Calcitsättigungsindex	0,13	-0,2 bis +0,2	Calcitsättigungsindex < 0,2
Oxidationsverhältnisse			oxidiertes Wasser
Sauerstoff	9,8	reduziert :	sauerstoffreich
Redoxspannung	368	O2 < 1	kein Nitrit
Nitrat	1,50		kein Ammonium
Nitrit	< 0,01	teilreduziert:	kein gelöstes Eisen
Ammonium	< 0,02	$1 \le O2 < 4$	kein gelöstes Mangan
Eisen	< 0,010		
Mangan	< 0,0008	oxidiert :	
		O2 > 4	
			Grenzwerte bei hier untersuchten
Trinkwassergrenzwerte		LE . 2700	Parametern eingehalten.
Leitfähigkeit	756 7.63	LF < 2790	
pH-Wert	7,63	pH 6,5-8,5	
TOC	< 0,9	TOC < 2	
Chlorid	92,7	C1 < 250	
Nitrit Nitrat	< 0,01	NO2 < 0,5	
	1,50	NO3 < 50 SO4 < 250	
Cultot	20.2	1.00/4 5 7.00	
	38,3		
Ammonium	< 0,02	NH4 < 0,5	
Ammonium Natrium	< 0,02 66,0	NH4 < 0,5 Na < 200	
Ammonium Natrium Eisen	< 0,02 66,0 < 0,010	NH4 < 0,5 Na < 200 Fe < 0,2	
Ammonium Natrium Eisen Mangan	< 0,02 66,0 < 0,010 < 0,0008	NH4 < 0,5 Na < 200 Fe < 0,2 Mn < 0,05	
Ammonium Natrium Eisen Mangan Aluminium	< 0,02 66,0 < 0,010 < 0,0008 < 0,010	$\begin{aligned} NH4 &< 0.5 \\ Na &< 200 \\ Fe &< 0.2 \\ Mn &< 0.05 \\ Al &< 0.2 \end{aligned}$	
Ammonium Natrium Eisen Mangan Aluminium Arsen	<0,02 66,0 <0,010 <0,0008 <0,010 0,0020	$\begin{aligned} NH4 &< 0.5 \\ Na &< 200 \\ Fe &< 0.2 \\ Mn &< 0.05 \\ Al &< 0.2 \\ As &< 0.01 \end{aligned}$	
Ammonium Natrium Eisen Mangan Aluminium Arsen Blei	<0,02 66,0 <0,010 <0,0008 <0,010 0,0020 <0,0005	$\begin{aligned} NH4 &< 0.5 \\ Na &< 200 \\ Fe &< 0.2 \\ Mn &< 0.05 \\ Al &< 0.2 \\ As &< 0.01 \\ Pb &< 0.01 \end{aligned}$	
Ammonium Natrium Eisen Mangan Aluminium Arsen Blei Chrom	< 0,02 66,0 < 0,010 < 0,0008 < 0,010 0,0020 < 0,0005 < 0,0002	$\begin{aligned} NH4 &< 0.5 \\ Na &< 200 \\ Fe &< 0.2 \\ Mn &< 0.05 \\ Al &< 0.2 \\ As &< 0.01 \\ Pb &< 0.01 \\ Cr &< 0.05 \end{aligned}$	
Sulfat Ammonium Natrium Eisen Mangan Aluminium Arsen Blei Chrom Nickel	<0,02 66,0 <0,010 <0,0008 <0,010 0,0020 <0,0005 <0,0002 0,0002	$\begin{aligned} NH4 &< 0.5 \\ Na &< 200 \\ Fe &< 0.2 \\ Mn &< 0.05 \\ Al &< 0.2 \\ As &< 0.01 \\ Pb &< 0.01 \\ Cr &< 0.05 \\ Ni &< 0.02 \end{aligned}$	
Ammonium Natrium Eisen Mangan Aluminium Arsen Blei Chrom	< 0,02 66,0 < 0,010 < 0,0008 < 0,010 0,0020 < 0,0005 < 0,0002	$\begin{aligned} NH4 &< 0.5 \\ Na &< 200 \\ Fe &< 0.2 \\ Mn &< 0.05 \\ Al &< 0.2 \\ As &< 0.01 \\ Pb &< 0.01 \\ Cr &< 0.05 \end{aligned}$	


5 / 12

Alle Metalle

relevante Messwerte		Bedingungen für wünschenswerten	Ergebnis
		Zustand	Grund
Säurekorrosion			unwahrscheinlich
pH-Wert	7,63	pH > 7 oder	nicht sauer
Basenkapazität	0,20	KB8,2 < 0,1	
Chlorid	92,7		
Nitrit	< 0,01		
Nitrat	1,50		
Sulfat	38,3		
Carboxylate (<c3)< td=""><td></td><td></td><td></td></c3)<>			
Korrosionsprodukte			nicht vorhanden
Aluminium	< 0,010	Al < 0,01	
Blei	< 0,0005	Pb < 0,01	
Chrom	< 0,0002	Cr < 0,01	
Eisen	< 0,010	Fe < 1	
Kupfer	0,0050	Cu < 0,01	
Nickel	0,0002	Ni < 0,01	
Zink	0,0080	Zn < 0,01	

Kupferwerkstoffe (Kupfer, Messing, Bronze, Rotguss)

relevante Messwerte		Bedingungen für wünschenswerten	Ergebnis
		Zustand	Grund
			•
gleichmäßige Flächen	korrosion		vernachlässigbar 🔼
pH-Wert	7,63	pH > 7,5	pH > 7.5
Säurekapazität	4,23	KS > 1	KS4,3 > 1
TOC	< 0,9	NH4 < 1	NH4 < 1
Ammonium	< 0,02		
Lochkorrosion Typ 1 (Kaltwassei	r)	unwahrscheinlich
Säurekapazität	4,23	KS4,3 > 1	KS4,3 > 1 mmol/l
Chlorid	92,7	Cl > NO3 + 2*SO4	C1/35 > NO3/62 + SO4/48
Nitrat	1,50	abfiltr. Stoffe < 1	keine Feststoffe
Sulfat	38,3		
abfiltrierbare Stoffe	< 1,0		
Feststoffe			
			_
Lochkorrosion Typ 2 (unwahrscheinlich
pH-Wert	7,63	pH > 7.0 oder	pH > 7.0
Säurekapazität	4,23	$KS_{4,3} > 1,5 \text{ oder}$	KS4,3 > 1,5
Kupferquotient (S3)	10,6	S3 > 1,5	S3 > 1,5
selektive Korrosion (E			unwahrscheinlich
Säurekapazität	4,23	KS4,3 > 1 oder	KS4,3 > 1Cl < Turner (KS4,3)
Chlorid	92,7	$Cl < Turner (KS_{4,3})$	
Bimetallkorrosion		T	unwahrscheinlich
Säurekapazität	4,23	S1 < 1	S1 < 1
Chlorid	92,7		
Nitrat	1,50		
Sulfat	38,3		
Anionenquotient (S1)	0,81		
		I	I
			_
Spannungsrisskorrosi		NTT 600	unwahrscheinlich
Ammonium	< 0,02	$NH_4 < 600$	wenig Ammonium, Nitrit, Nitrat
Nitrit	< 0,01	$NO_2 < 300$	(keine Nitritbildung)
Nitrat	1,50	$NO_3 < 400$	
D . CI	•	7*	
Beeinflussung der Tri			unwahrscheinlich
pH-Wert	7,63	$pH \ge 7.4$ oder	pH > 7,4
TOC	< 0,9	(pH > 7 und)	pH > 7
		$TOC \le 1,5$)	TOC < 1,5

Flächenkorrosion führt zu gleichmäßigen, dünnen, braunen oder grünen Deckschichten und selten zu Schäden.

Bei Lochkorrosion vom Typ 1 in Kaltwasser entstehen auf der Innenseite halbkugelförmige Mulden oder Pusteln mit nadelstichartigen Löchern nach außen. Neben einer ungünstigen Wasserzusammensetzung sind Ablagerungen, kohlenstoffhaltige Filme oder Oxidfilme häufig Ursache von Lochfraß. Tritt Lochfraß 1cm neben einer Hartlot- oder überhitzten Weichlotstelle auf, so ist die Ursache in diesem Fall verkohltes Ziehfett, welches vom Herstellungsprozess des Cu-Rohres dessen Oberfläche belegt. Cu-Rohre DIN EN 1057 enthalten weniger als 0,2 mg/dm² Kohlenstoff, solche nach DVGW-GW 392 oder RAL-RG 641/1-Güte nur 0,1 mg/dm².

Lochkorrosion vom Typ 2 tritt im Warmwasser auf. Sie entsteht bei pH-Werten unter 7 sowie niedrigem Hydrogencarbonat- und hohem Sulfatgehalt.

Die Anfälligkeit für eine selektive Entzinkung von Messing hängt von der Legierungszusammensetzung ab. Wasserseitig wird sie durch wenig Hydrogencarbonat und viel Chlorid gefördert. Dabei treten weiße Zink-Korrosionsprodukte auf und das Kupfer verbleibt in poröser, schwammartiger Form.

Für Spannungskorrosion ist vor allem Messing anfällig. Sie tritt allerdings nur bei erheblichen Gehalten an Ammoniak oder Nitrit auf, die in natürlichen Wässern nicht vorkommen. Allerdings kann Nitrat unter Ablagerungen oder in Spalten reduziert werden, so dass lokal relevante Konzentrationen entstehen.

Bimetallkorrosion tritt normalerweise nicht auf, da Kupfer ein edles Metall ist. Bei Verbindungen von Kupfer mit Edelstahl können Probleme bei großen Stahl- und kleinen Kupferflächen entstehen. Die Bimetallkorrosion wird durch aktivierende Anionen (Chlorid, Nitrat, Sulfat...) gefördert und durch inhibierende Anionen wie Hydrogencarbonat gebremst.

Schmelztauchverzinkte Eisenwerkstoffe

relevante Messwerte		Bedingungen für	Ergebnis
		wünschenswerten	
		Zustand	Grund
Deckschichtbildung			keine Deckschichtbildung
Basenkapazität	0,20	KB < 0,7	Mulden- oder Lochkorrosion
Säurekapazität	4,23	KS > 1	
Phosphor	< 0,20	Inhibitoren	
Kieselsäure	10,7	keine Mulden-	
TOC	< 0,9	oder Lochkorrosion	
starke gleichmäßige Fl	ächenkorr	osion	wahrscheinlich
pH-Wert	7,63	pH ≥7	keine Deckschichtbildung
		Deckschichtbildung	
Mulden- und Lochkorn		Tu	möglich
Säurekapazität	4,23	S1 < 0,5	
Anionenquotient (S1)	0,81	KS > 2	
Calcium	52,0	Ca > 20	
			_
selektive Zinkkorrosion		1	unwahrscheinlich
Gerieselquotient (S2)	141	S2 < 1 oder	NO3 < 19
Nitrat	1,50	S2 > 3 oder	
		Nitrat < 19	
elektrochemische Korr			unwahrscheinlich
Leitfähigkeit	756	Cu < 0,063	Cu < 0,063
Kupfer	0,0050	oder	
		Deckschichtbildung	
		oder	
		LF < 50	
Beeinflussung der Trin			nicht zu erwarten
Basenkapazität	0,20	$KB_{8,2} \le 0,2$	KB8,2 <= 0,2
Anionenquotient (S1)	0,81	S1 ≤1	S1 <= 1

Unter günstigen Bedingungen findet in verzinkten Rohren eine geringe gleichmäßige Flächenkorrosion statt und bildet eine festhaftende Kalk-Zink-Rost-Schutzschicht aus. Hierzu ist auch ein ausreichend hoher Sauerstoffgehalt im Wasser notwendig (> 6mg/l).

Ist das Wasser stark kalkaggressiv, kann sich keine Kalkrostschutzschicht ausbilden und eine bereits bestehende wird aufgelöst. Die freiliegende Zinkschicht wird zerstört, das Grundmaterial korrodiert.

Eine Anhäufung von Messingbauteilen und stagnierender Betrieb ist häufig Ursache von Lochkorrosion (im Bereich von einem Meter hinter den Bauteilen). Kupferwerte $> 0,1\,$ mg/cm² in der Deckschicht um die Schadensstelle ist ein eindeutiges Zeichen für elektrochemische Korrosion.

Nichtrostende Stähle, Mo-frei

relevante Messwerte		Bedingungen für wünschenswerten Zustand	Ergebnis Grund	
		Zuotano	OT WITE	
Lochkorrosion im Ka	ltwasser		unwahrscheinlich	
Chlorid	92,7	Cl < 213	Chlorid < 213	
		1	I	
7 11			7 7 . 7 . 7	_
Lochkorrosion im Wa			wahrscheinlich	
Chlorid	92,7	Cl < 53	Chlorid >= 53	
		'	'	
Spaltkorrosion im Ka	ltwasser		möglich	
Chlorid	92,7	Cl << 213	53<= Chlorid < 213	
				_
Spaltkorrosion im Wa	rmwasser		wahrscheinlich	
Chlorid	92,7	Cl < 53	Chlorid >= 53	
			I	
Spannungskorrosion,	Messerschi	nitt-Korrosion von		_
Hartlötverbindungen			unwahrscheinlich	
Chlorid	92,7	C1 < 213	Chlorid < 213	
		I	ļ	

Lochkorrosion ist eine lokale, in die Tiefe gehende Korrosion. Sie kann ausgelöst werden durch mechanische Beschädigung der Oberfläche oder durch Partikel von un- oder niedriglegiertem Eisen (Lokalelementbildung mit Rostbildung und Anreicherung von Chloridionen).

Spaltkorrosion tritt in Spalten unter 0,5 mm auf. Es bilden sich Konzentrationselemente mit nachfolgender Lochkorrosion im Spalt. Spalten können an Rohrverbindungen, an Dichtungen oder unter Ablagerungen vorhanden sein. Die Korrosion wird verstärkt durch stagnierendes Wasser und tiefe Spalten.

Messerschnittkorrosion tritt an Hartlötverbindungen von Edelstahl mit Silberlot auf. Selektive Korrosion an der Phasengrenze führt schließlich zu einer Lösung der Lötverbindung. Die Dauer bis zur Schadensausbildung kann bei mehreren Jahren liegen.

Spannungsrisse sind nehmen ihren Ausgang von anderen Korrosionsstellen und entstehen dann unter mechanischer Belastung.

Gusseisen, unlegierte und niedrig legierte Stähle

relevante Messwerte		Bedingungen für	Ergebnis
		wünschenswerten	
		Zustand	Grund
Schutzschichtbildung i	und		
gleichmäßige Flächen	korrosion		zu erwarten
Sauerstoff	9,8	O2 > 3,2	O2 > 3,2
pH-Wert	7,63	pH > 7	pH > 7
Säurekapazität	4,23	KS4,3 > 2	KS4,3 > 2
Calcium	52,0	Ca > 40	Ca > 40
Lochkorrosion			unwahrscheinlich
Anionenquotient (S1)	0,81	S1 < 1	S1 < 1
TOC	< 0,9	TOC < 5	geringer organischer
			Kohlenstoffgehalt
selektive Korrosion			begünstigt; Spongiose zu erwarten
pH-Wert	7,63	pH > 7	KB8,2 >= 0,1
Basenkapazität	0,20	KB < 0,1	
Bimetallkorrosion			keine Anhaltspunkte
Leitfähigkeit	756	LF < 100 oder	viel Calciumhydrogencarbonat
Säurekapazität	4,23	$Ca(HCO_3)_2 > 1 \text{ mmol/l}$	
Calcium	52,0		

Spongiose kann auftreten, wenn im Material eine ungleichmäßige Kohlenstoffverteilung vorliegt, z.B. an Graphitschichten in Grauguss oder an Schweißnähten. In diesem Fall wird der metallische Anteil herausgelöst, während das schwarze Graphitskelett schwammartig erhalten bleibt.

Bei Wässern ohne Luftzutritt (Kühl- oder Heizungswässer in geschlossenen Systemen) stellt sich ein pH-Wert > 8,5 ein und der im Füllwasser vorhandene Sauerstoff wird vollständig verbraucht. Dann findet keine Korrosion statt.

Aluminium

relevante Messwerte		Bedingungen für wünschenswerten Zustand	Ergebnis Grund
Säurekorrosion			nein
pH-Wert	7,63	pH >= 4,5	pH > 4.5
Basenkorrosion			nein
pH-Wert	7,63	pH < 8,5	pH < 8,5
			1
chloridinduzierte Kori	rosion		wahrscheinlich
Chlorid	92,7	Chlorid < 35	viel Chlorid
Bimetallkorrosion			keine Anhaltspunkte
Kupfer	0,0050	Cu < 0,063	keine erhöhten Gehalte edlerer
Chrom	< 0,0002	Cr < 0.05	Metalle
Nickel	0,0002	Ni < 0,05	

Manche Aluminiumlegierungen sind sehr empfindlich gegen Chloride (Lochfraß).

Asbestzement

relevante Messwerte		Bedingungen für wünschenswerten Zustand	Ergebnis Grund	
				_
Ablösung von Fasern			unwahrscheinlich	•
Ablösung von Fasern Calcitsättigungsindex	0,13	nicht kalkaggressiv	unwahrscheinlich nicht kalkaggressiv	
	0,13 7,63	nicht kalkaggressiv (pH ≥ 7 oder	1	•

Gabi Först

Bemerkungen zu den einzelnen Parametern

Parameter	Bemerkungen zu den Parametern
Wassertemperatur	bei >30°C tritt eine Potentialumkehr bei Fe/Zn ein
Leitfähigkeit (bei 25°C)	hohe Salzgehalte beeinträchtigen den Geschmack und fördern die
	elektrochemische Korrosion
pH-Wert	pH unter 7: Säurekorrosion, Leitungsmetalle werden gelöst
Sauerstoff	hoher O ₂ -Gehalt begünstigt die Ausbildung eine Kalk-Zink-
	Rostschutzschicht
Redoxspannung	Redoxverhältnisse oxidierend
reconspanning	oder reduzierend (erhöhte Löslichkeit von Fe, Mn)
Basenkapazität	gelöstes Kohlendioxid, Maß für den Säuregehalt
Säurekapazität	Hydrogencarbonat, Maß für die Alkalität und Puffervermögen
TOC	TOC hat inhibitorische Wirkung bei Lochfraß-I (Cu),
100	
	im TW unerwünscht, Nahrungsgrundlage für Bakterien
spektr. Absorptionskoeff. 254nm	Maß für organische Inhaltsstoffe, < 8/m bei UV-Desinfektion
spektr. Absorptionskoeff. 436nm	Färbung
Härte	Voraussetzung für Kalkablagerungen und Schutzschichtbildung
Härtebereich	Waschmitteldosierung
Chlor, frei	starker Oxidationsmittel, die Analysemethode erfasst auch andere
abfiltrierbare Stoffe	ungelöste Feststoffe, Ablagerungen, häufig Ursache für Lokalelemente
Kieselsäure	natürlicher Korrosionsinhibitor
Chlorid	fördert häufig Lochkorrosion (insbesondere bei Edelstahl)
Nitrat	siehe Korrosionsbeurteilung
Phosphor	Korrosionsinhibitor, Nährstoff für Algenbildung
Sulfat	siehe Korrosionsbeurteilung
Ammonium	Cu-Amminkomplex, Redoxverhältnisse, SpRK bei Cu
Calcium	Härte, Kesselstein
Magnesium	Härte
Eisen	Korrosionsprodukt oder gelöst in reduziertem Wasser
Mangan	meist geogen in reduzierten Wässern
Aluminium	Korrosionsprodukt, Fällungsmittel
Arsen	toxisch, carcinogen, meist geogenen Ursprungs oder aus Verzinkung
Blei	toxisch, meist aus Verzinkung
Cadmium	toxisch, meist aus Verzinkung toxisch, meist aus Installationsmaterial (Verzinkung, Lote)
Chrom	toxisch, meist aus Installationsmaterial (verzinkung, Lote)
Kupfer	toxisch, meist aus Leitungswerkstoffen
Nickel	toxisch, meist aus Installationsmaterial
Zink	meist aus Leitungswerkstoffen
Kohlendioxid	$\approx KB_{8,2}$ Kohlensäure, meist unerwünscht
Hydrogencarbonat	≈ KS _{4,3} günstig für Deckschichtbildung
pH-Wert	kann berechnet werden aus LF, Ca, KS _{4,3} , KB _{8,2} und Temperatur
pH-Wert nach Calcitsättigung	Kalkkohlensäuregleichgewicht, sollte etwa gleich dem pH-Wert sein
Calcitsättigungsindex	pH - pH-Gleichgewicht
Calcitlösekapazität	<5; bei Mischung mehrerer Wässer <10 mg/l CaCO ₃ (TrinkwV Anl.3)
Anionenquotient	$S1 = (Cl + NO_3 + 2*SO_4) / KS_{4,3}$
Kationenquotient	S0 = (Na + K) / (2*Ca + 2*Mg)
Gerieselquotient	$S2 = (Cl + 2*SO_4) / NO_3$
Kupferquotient	$S3 = KS_{4,3} / SO_4$

12 / 12

Institut für Umweltanalytik: Zulassungen und Zertifizierung Akkreditiertes Prüflabor DAkkS D-PL-21277-01-00

Private Sachverständige für die Wasserwirtschaft Untersuchungsstelle nach § 40 TrinkwV Zertifiziertes Prüflabor, AQS Bayern, AQS-Nr. 05/008/96

Zulassung nach § 44 Infektionsschutzgesetz